The Deposit Business at Large vs. Small Banks

Adrien d'Avernas Andrea Eisfeldt

Can Huang Richard Stanton Nancy Wallace

SITE 2024 Climate Finance and Banking, August 2024

This Paper

- Deposit businesses differ at large vs. small banks
 - \rightarrow key driver: heterogeneity of depositors' preferences

This Paper

- Deposit businesses differ at large vs. small banks
 → key driver: heterogeneity of depositors' preferences
- ▷ Database on U.S. bank branches deposit rates and location 2001-2019
- Large banks are more expensive but locate in rich, urban areas
 → more sophisticated depositors receive lower deposit rates
- Small banks offer lower rates when competing with large banks

This Paper

- Deposit businesses differ at large vs. small banks
 → key driver: heterogeneity of depositors' preferences
- ▷ Database on U.S. bank branches deposit rates and location 2001-2019
- Large banks are more expensive but locate in rich, urban areas \rightarrow more sophisticated depositors receive lower deposit rates
- Small banks offer lower rates when competing with large banks
- ▷ Model with small/large bank location choice and preferences heterogeneity
- \triangleright Measure customer preferences heterogeneity and confirm model's predictions \rightarrow demand system with heterogeneous preferences across counties in the U.S.

Literature on Banks' Deposit Business

Deposit franchise value

 \rightarrow deposit business differs across banks and driven by preferences

Calomiris and Nissim (2014), Egan, Hortaçsu, and Matvos (2017), Atkeson, d'Avernas, Eisfeldt, and Weill (2018), Minton, Stulz, and Taboada (2019), Xiao (2020), Ma and Scheinkman (2022), Egan, Lewellen, and Sunderam (2022), Wang, Whited, Wu, and Xiao (2022), Jiang, Matvos, Piskorski, and Seru (2023)

Market power

 \rightarrow clarify relation between market power, uniform pricing, and HHI Radecki (2000), Biehl (2002), Heitfield and Prager (2004), Park and Pennacchi (2009), Drechsler, Savov, Schnabl (2017, 2021), Begenau and Stafford (2022)

Empirical Facts

	CHECK \$2.5K		SAV \$2.5K	
FE	Time	$Bank{ imes}Time$	Time	$Bank{ imes}Time$
Observations R-squared	$52,618,184 \\ 0.351$	$51, 125, 529 \\ 0.915$	$54, 525, 429 \\ 0.474$	52,999,174 0.942

- RateWatch collected weekly at branch-level 2001-2019
- Banks set uniform rates across branches (Begenau and Stafford, 2022)
 - \rightarrow difficult set deposit rates at the branch level (Heitfield, 1999; Radecki, 2000; Biehl, 2002; Heitfield and Prager, 2004)
 - \rightarrow complaints about regional price dispersion (DellaVigna and Gentzkow, 2019; Cavallo, 2018)
 - $\rightarrow\,$ internal competition across branches of the same bank

FE	$Bank{\times}Time$	$Large{\times}Time$	$HHI{\times}Time$	$Population \times Time$	
Observations R-squared	51, 125, 529 0.874	$49,897,464\\0.140$	$51, 125, 529 \\ 0.010$	$50, 160, 286 \\ 0.011$	
SAV \$2.5K					
FE	$Bank{\times}Time$	$Large{\times}Time$	$HHI{\times}Time$	$Population \times Time$	
Observations R-squared	52,999,174 0.894	51,692,433 0.151	52,999,174 0.010	$52,002,321 \\ 0.009$	

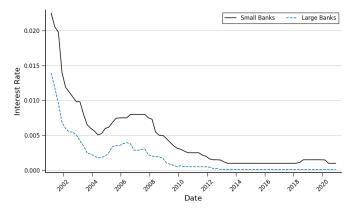
CHECK \$2.5K

• Large defined as branch of one of the 14 large complex bank holding companies subject to the Supervisory Capital Assessment Program of 2009

Size of bank matters

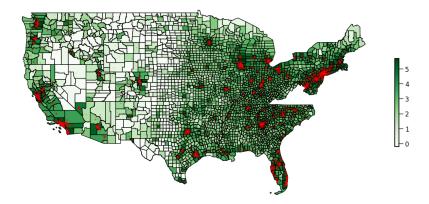
> HHI or population size explains very little variation

Small Banks Offer Higher Deposit Rates



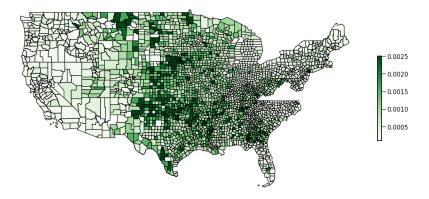
- Large defined as branch of one of the 14 large complex bank holding companies subject to the Supervisory Capital Assessment Program of 2009
- ▷ Small banks provide rates 30 basis points higher on average

Large Banks Branch Locations and Population



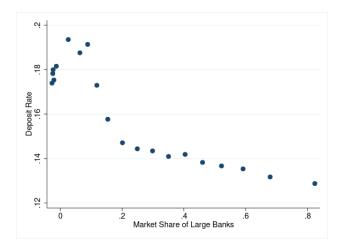
- Branch locations of large banks in red and population size in green
- > More financially sophisticated depositors receive lower deposit rates

Geography of Deposit Rates



- Higher deposit rates in darker green
- More highly populated areas with higher average incomes, higher house prices, lower average ages, and higher financial sophistication (Campbell, 2006)

Deposit Rates of Small Banks and Large Banks Market Shares



• Inconsistent with small banks setting higher rates to compete against large banks

Model

Preferences

• Mass M_k of depositors i in market k choose among bank deposits j

$$\max_{j \in \mathcal{B}_k} u_{ijk} = -\alpha_k s_j + \beta_k x_j + \epsilon_{ijk}$$

where s_j is the deposit spread, $x_j\in\{0,1\}$ represents financial services, and $\epsilon_{ijk}\sim\exp(-\exp(-\epsilon_{ijk}))$

 \triangleright Price sensitivity α_k and value of financial services β_k vary across markets

• Market share for deposits of bank j in market k

$$d_{jk} = \frac{\exp(-\alpha_k s_j + \beta_k x_j)}{\sum_{i \in \mathcal{B}_k} \exp(-\alpha_k s_i + \beta_k x_i)}$$

Preferences

• Mass M_k of depositors i in market k choose among bank deposits j

$$\max_{j \in \mathcal{B}_k} u_{ijk} = -\alpha_k s_j + \beta_k x_j + \epsilon_{ijk}$$

where s_j is the deposit spread, $x_j\in\{0,1\}$ represents financial services, and $\epsilon_{ijk}\sim\exp(-\exp(-\epsilon_{ijk}))$

 \triangleright Price sensitivity α_k and value of financial services β_k vary across markets

Market share for deposits of bank j in market k

$$d_{jk} = \frac{\exp(-\alpha_k s_j + \beta_k x_j)}{\sum_{i \in \mathcal{B}_k} \exp(-\alpha_k s_i + \beta_k x_i)}$$

• Bank j chooses services $x_j \in \{0, 1\}$, branches $b_{jk} \in \{0, 1\}$, and spread s_j

$$\max_{x_j, s_j} \sum_{k=1}^{K} \left((s_j - c) D_{jk} - \kappa_k \right) \mathbb{1} \{ b_{jk} = 1 \} - \chi x_j$$

• Constraint to set uniform deposit spread $r - r_j = s_j$ across branches

$$s_j = c + \eta_j^{-1} \qquad \eta_j \equiv \frac{\sum_{k \in \mathcal{M}_j} D_{jk} \alpha_k (1 - d_{jk})}{\sum_{k \in \mathcal{M}_j} D_{jk}}$$

where η_i is the deposit-weighted average demand semi-elasticity faced by bank j

• We assume a simple rule for the decision to open a branch in a market

$$b_{jk} = 1$$
 if and only if $(s_j - c)D_{jk} \ge \kappa_k$

Free entry condition pins down the number of banks in each market

• Bank j chooses services $x_j \in \{0, 1\}$, branches $b_{jk} \in \{0, 1\}$, and spread s_j

$$\max_{x_j, s_j} \sum_{k=1}^{K} \left((s_j - c) D_{jk} - \kappa_k \right) \mathbb{1} \{ b_{jk} = 1 \} - \chi x_j$$

• Constraint to set uniform deposit spread $r - r_j = s_j$ across branches

$$s_j = c + \eta_j^{-1} \qquad \eta_j \equiv \frac{\sum_{k \in \mathcal{M}_j} D_{jk} \alpha_k (1 - d_{jk})}{\sum_{k \in \mathcal{M}_j} D_{jk}}$$

where η_i is the deposit-weighted average demand semi-elasticity faced by bank j

• We assume a simple rule for the decision to open a branch in a market

$$b_{jk} = 1$$
 if and only if $(s_j - c)D_{jk} \ge \kappa_k$

Free entry condition pins down the number of banks in each market

• Bank j chooses services $x_j \in \{0, 1\}$, branches $b_{jk} \in \{0, 1\}$, and spread s_j

$$\max_{x_j, s_j} \sum_{k=1}^{K} \left((s_j - c) D_{jk} - \kappa_k \right) \mathbb{1} \{ b_{jk} = 1 \} - \chi x_j$$

• Constraint to set uniform deposit spread $r - r_j = s_j$ across branches

$$s_j = c + \eta_j^{-1} \qquad \eta_j \equiv \frac{\sum_{k \in \mathcal{M}_j} D_{jk} \alpha_k (1 - d_{jk})}{\sum_{k \in \mathcal{M}_j} D_{jk}}$$

where η_i is the deposit-weighted average demand semi-elasticity faced by bank j

• We assume a simple rule for the decision to open a branch in a market

$$b_{jk} = 1$$
 if and only if $(s_j - c)D_{jk} \ge \kappa_k$

Free entry condition pins down the number of banks in each market

• Bank j chooses services $x_j \in \{0, 1\}$, branches $b_{jk} \in \{0, 1\}$, and spread s_j

$$\max_{x_j, s_j} \sum_{k=1}^{K} \left((s_j - c) D_{jk} - \kappa_k \right) \mathbb{1} \{ b_{jk} = 1 \} - \chi x_j$$

• Constraint to set uniform deposit spread $r - r_j = s_j$ across branches

$$s_j = c + \eta_j^{-1} \qquad \eta_j \equiv \frac{\sum_{k \in \mathcal{M}_j} D_{jk} \alpha_k (1 - d_{jk})}{\sum_{k \in \mathcal{M}_j} D_{jk}}$$

where η_j is the deposit-weighted average demand semi-elasticity faced by bank j

• We assume a simple rule for the decision to open a branch in a market

$$b_{jk} = 1$$
 if and only if $(s_j - c)D_{jk} \ge \kappa_k$

> Free entry condition pins down the number of banks in each market

Parameters Restrictions and Equilibrium

- The set of parameters $\theta \equiv \{\chi,c,M_k,\kappa_k,\alpha_k,\beta_k\}_{k=1}^K$ is such that
 - > Too expensive to invest in financial services for single-market banks

$$\beta_k < \log\left(1 + \frac{\chi}{\kappa_k}\right) \left(1 + \frac{\kappa_k \alpha_k}{M_k}\right)$$

> All markets are sufficiently large for at least two single-market banks to open

$$\frac{M_k}{\kappa_k \alpha_\ell} > 1 \ \forall k, \ell$$

• We solve for the unique pure strategy Nash equilibrium

Parameters Restrictions and Equilibrium

- The set of parameters $\theta \equiv \{\chi,c,M_k,\kappa_k,\alpha_k,\beta_k\}_{k=1}^K$ is such that
 - > Too expensive to invest in financial services for single-market banks

$$\beta_k < \log\left(1 + \frac{\chi}{\kappa_k}\right) \left(1 + \frac{\kappa_k \alpha_k}{M_k}\right)$$

> All markets are sufficiently large for at least two single-market banks to open

$$\frac{M_k}{\kappa_k \alpha_\ell} > 1 \ \forall k, \ell$$

• We solve for the unique pure strategy Nash equilibrium

Entry Condition

• The number of single-market banks in market k is given by

$$\begin{split} N_k^S &= \left\lfloor \frac{M_k}{\kappa_k \alpha_k} - \sum_{i \in \mathcal{L}_k} \exp\left(-\alpha_k (s_i - s_k^S) + \beta_k x_i\right) + 1 \right\rfloor \\ &= \frac{M_k}{\kappa_k \alpha_k} - \sum_{i \in \mathcal{L}_k} \exp\left(-\alpha_k (s_i - s_k^S) + \beta_k x_i\right) + 1 - \theta_k \quad \text{if} \quad N_k^S > 0 \end{split}$$

where $\theta_k \in [0,1)$ and $\mathcal{L}_k \equiv \{j: b_{jk} = 1 \text{ and } |\mathcal{M}_j| > 1\}$

• We assume $\theta_k = 0$ and $N_k^S > 0$

• Single-market banks serve as residual:

$$\sum_{i \in \mathcal{B}_k} \exp(-\alpha_k s_i + \beta_k x_i) = \frac{M_k}{\kappa_k \alpha_k} + 1$$

Problem of a bank does not depend on strategy of other multi-market banks

Entry Condition

• The number of single-market banks in market k is given by

$$\begin{split} N_k^S &= \left\lfloor \frac{M_k}{\kappa_k \alpha_k} - \sum_{i \in \mathcal{L}_k} \exp\left(-\alpha_k (s_i - s_k^S) + \beta_k x_i\right) + 1 \right\rfloor \\ &= \frac{M_k}{\kappa_k \alpha_k} - \sum_{i \in \mathcal{L}_k} \exp\left(-\alpha_k (s_i - s_k^S) + \beta_k x_i\right) + 1 - \theta_k \quad \text{if} \quad N_k^S > 0 \end{split}$$

where $\theta_k \in [0,1)$ and $\mathcal{L}_k \equiv \{j: b_{jk} = 1 \text{ and } |\mathcal{M}_j| > 1\}$

 \bullet We assume $\theta_k=0$ and $N_k^S>0$

• Single-market banks serve as residual:

$$\sum_{i \in \mathcal{B}_k} \exp(-\alpha_k s_i + \beta_k x_i) = \frac{M_k}{\kappa_k \alpha_k} + 1$$

Problem of a bank does not depend on strategy of other multi-market banks

Entry Condition

• The number of single-market banks in market k is given by

$$\begin{split} N_k^S &= \left\lfloor \frac{M_k}{\kappa_k \alpha_k} - \sum_{i \in \mathcal{L}_k} \exp\left(-\alpha_k (s_i - s_k^S) + \beta_k x_i\right) + 1 \right\rfloor \\ &= \frac{M_k}{\kappa_k \alpha_k} - \sum_{i \in \mathcal{L}_k} \exp\left(-\alpha_k (s_i - s_k^S) + \beta_k x_i\right) + 1 - \theta_k \quad \text{if} \quad N_k^S > 0 \end{split}$$

where $\theta_k \in [0,1)$ and $\mathcal{L}_k \equiv \{j: b_{jk} = 1 \text{ and } |\mathcal{M}_j| > 1\}$

- We assume $\theta_k = 0$ and $N_k^S > 0$
- Single-market banks serve as residual:

$$\sum_{i \in \mathcal{B}_k} \exp(-\alpha_k s_i + \beta_k x_i) = \frac{M_k}{\kappa_k \alpha_k} + 1$$

> Problem of a bank does not depend on strategy of other multi-market banks

Results: Competition

• Small banks operate in one market. If $x_j = 0$, then $|\mathcal{M}_j| = 1$.

- Two types of banks arise endogenously:
 - \rightarrow small banks that operate in one market and do not provide financial services
 - \rightarrow large banks that operate in many markets and provide financial services

• Collocation markets' demand. If $i \in C$, the ratio of deposits supplied by small and large banks is given by

$$\log\left(\frac{D_k^S}{D_j^L}\right) = \alpha_k \left(s_j^L - s_k^S\right) - \beta_k.$$

Small banks compete with lower spreads, large banks with financial services

Results: Competition

• Small banks operate in one market. If $x_j = 0$, then $|\mathcal{M}_j| = 1$.

- Two types of banks arise endogenously:
 - ightarrow small banks that operate in one market and do not provide financial services
 - \rightarrow large banks that operate in many markets and provide financial services

 Collocation markets' demand. If i ∈ C, the ratio of deposits supplied by small and large banks is given by

$$\log\left(\frac{D_k^S}{D_j^L}\right) = \alpha_k \left(s_j^L - s_k^S\right) - \beta_k.$$

> Small banks compete with lower spreads, large banks with financial services

Results: Location Decisions

• Large banks' location. If

$$\frac{\alpha_k}{\eta_j} - \log\left(\frac{\alpha_k}{\eta_j}\right) > 1 + \beta_k x_j + \frac{\kappa_k \alpha_k}{M_k}$$

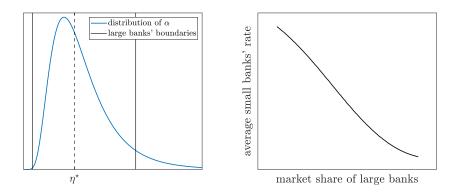
then bank j does not locate in market k.

- \triangleright Not profitable for large bank to open branch in market k if:
 - \rightarrow preference for financial services β_k too low
 - \rightarrow market k elasticity α_k too different from bank's j average elasticity η_i
- Collocation markets. Assume $M_k/\kappa_k = M_\ell/\kappa_\ell$ and $\beta_k = \beta_\ell$. If $k \in \mathcal{M}_j$ and $\ell \notin \mathcal{M}_j$, then

$$\frac{\alpha_k}{\eta_j} - \log\left(\frac{\alpha_k}{\eta_j}\right) < \frac{\alpha_\ell}{\eta_j} - \log\left(\frac{\alpha_\ell}{\eta_j}\right).$$

 \triangleright Large banks do not open branches in market with extreme α_k

Results: Small Banks Spreads and Large Banks Market Share



- \triangleright Large banks target low-lpha markets with many other similar markets (high density)
- \triangleright Small banks can offer lower deposit rates in low- α markets

Results: HHI and Deposit Spreads

• Herfindahl–Hirschman index. If $k \notin C$, then

$$s_k^S = c + \frac{1}{\alpha_k} + \frac{\kappa_k}{M_k}$$
 and $HHI_k = \frac{10000}{1 + \frac{M_k}{\kappa_k \alpha_k}}$.

Thus,

$$\frac{\partial s_k^S}{\partial \alpha_k} \frac{\partial \alpha_k}{\partial HHI_k} < 0 \text{ and } \frac{\partial s_k^S}{\partial \kappa_k} \frac{\partial \kappa_k}{\partial HHI_k} > 0.$$

> We should not expect HHI to explain well variation in deposit spreads

Customers' Preferences

Berry, Levinsohn, and Pakes' (1995) Estimation of Demand

 Customers i in market k choose their allocation to cash, bonds, and deposits of bank j to maximize

$$u_{i,k,j,t} = -\alpha_i s_{k,j,t} + \beta \mathbf{X}_{k,j,t} + \xi_{k,j,t} + \varepsilon_{i,k,j,t}$$
$$\alpha_i = \alpha + \gamma \mathsf{INC}_i + \sigma \nu_i$$

where

$$\varepsilon_{i,k,j,t} \sim F(\varepsilon) = e^{-e^{-\varepsilon}}$$
 and $\nu_i \sim N(0,1)$

- Heterogeneous price sensitivities α_i as a function of income INC_i
- Supply shocks as instruments for $s_{k,j,t}$ (Dick, 2008; Wang et al., 2022)
 - ratio of staff salaries to total assets in prior year
 - ratio of non-interest expenses to total assets in prior year
 - local labor cost
- Relevance: costs influence pricing
- Exclusion restriction: demand insensitive to costs changing

Estimation: BLP Random Parameters Logit Demand Model

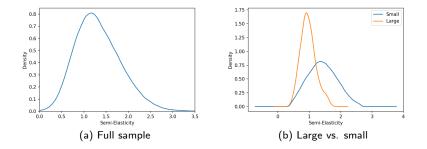
- Deposit rates data from Call Reports spanning 2001 to 2019
- FDIC's Summary of Deposits for branch-level deposit balances
- Macro aggregates from FRED to proxy for the share of cash, bonds, and deposits
- Assume non-deposit wealth proportional to total personal income from BEA
- \bullet Use household income INC_i randomly drawn from Data Axle's US Consumer Database
- $\bullet\,$ Follow Nevo (2000) and Conlon and Gortmaker (2020) to estimate key parameters $\alpha,\beta,\gamma,\sigma$

Estimation Results

Parameter		Estimation	SE
Deposit Rate	α	1.171	(0.046)
Large×Market Average Income	β_1	0.015	(0.001)
Log(Employee per Branch)	β_2	0.476	(0.019)
Log(Branch Number)	β_3	0.133	(0.016)
Heterogeneous rate Sensitivity:			
Household Income	γ	-0.533	(0.014)
Rate Sensitivity Dispersion	σ	0.957	(0.038)
Observation Adjusted R^2	296,174 0.540		

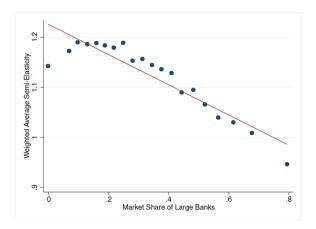
- Rich households much less sensitive to rates: $\Delta \alpha / \Delta sd(INC) = -0.49$
- Rich households care more about financial services offered by large banks β₁ > 0
 → banks in San Francisco (avg inc. of \$135k) can offer deposit rate 1.09% lower
 than in Champaign (avg inc. of \$50k) to achieve same satisfaction

Density of Estimated Rate Semi-elasticities



 \rightarrow Only small banks locate in high elasticity markets

Financial Sophistication



- Large banks locate in markets with lower elasticities
- $\rightarrow\,$ Large banks can charge higher spreads because of lower customers' elasticities
- $\rightarrow\,$ High income customers have lower elasticities

Customers' Preferences Drive Deposit Spreads Variation

CHECK \$2.5K						
FE	$Large{ imes}Time$	$\hat{\eta}^r imes Time$	HHI imes Time			
Observations R-squared	$45,767,311\\0.140$	$46,156,131 \\ 0.213$	$46,156,131 \\ 0.010$			

Semi-elasticities

$$\widehat{\zeta}_{k,j,t} \equiv \frac{\% \Delta m_{k,j,t}}{\Delta s_{k,i,t}}$$

ightarrow Explains more deposit variation than size and 20x more than HHI

Conclusion

- Deposit businesses differ at large vs. small banks
 → key driver: heterogeneity of depositors' preferences
- Large banks are dominant and expensive \rightarrow economies of scale in quality of financial services
- Large banks locate in rich, urban areas
 → they seek uniform demand curves
- More sophisticated depositors receive lower deposit rates \rightarrow richer households less sensitive to deposit rates
- Small banks offer lower rates when competing with large banks \rightarrow large banks locate where demand is less elastic

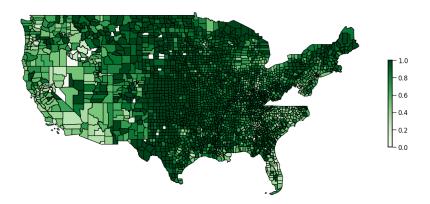
		12M CD \$10K		MM \$25K	
FE	Т	ime	$Bank{ imes}Time$	Time	$Bank{ imes}Time$
Observati	ons 55,1	62,370	53,630,152	51,808,776	50,371,019
R-squared	0	.866	0.988	0.583	0.947

12M CD \$10K					
FE	$Bank{\times}Time$	$Large{\times}Time$	$HHI{\times}Time$	$Population \times Time$	
Observations	53, 630, 152	52, 315, 397	53, 630, 152	52,606,682	
R-squared	0.913	0.219	0.009	0.013	
MM \$25K					
FE	$Bank{\times}Time$	$Large{\times}Time$	$HHI{\times}Time$	$Population \times Time$	
Observations	50, 371, 019	49,076,644	50, 371, 019	49,543,246	
R-squared	0.877	0.110	8.618e-0 4	0.004	

	CHECK \$2.5K	SAV \$2.5K	12M CD \$10K	MM \$25K
	(1)	(2)	(3)	(4)
large	-0.002^{***}	-0.003^{***}	-0.005^{***}	-0.003^{***}
	(2.501e - 05)	(2.952e - 05)	(3.601e - 05)	(4.367e - 05)
T-FE	Yes	Yes	Yes	Yes
Observations	4, 197, 967	4, 332, 303	4,352,620	4, 167, 318
R-squared	0.477	0.577	0.912	0.651

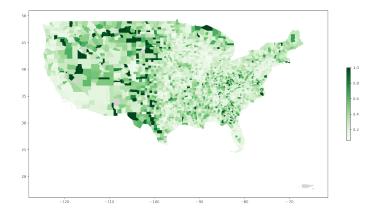
Deposit rate differences between large and small banks. This table estimates the average deposit rate difference between large and small banks using RateWatch data. Branch-level deposit rates are collapsed into bank-level rates by taking the average rates weighted by branch deposit balance. The 14 large depository institutions are defined above and the dependent variables are deposit rates of 12 month CD of \$10,000, money market accounts of \$25,000, saving account of \$2,500, and checking account of \$2,500. * p < 0.10, ** p < 0.05, *** p < 0.01.

Share of Branches Held by Small Banks



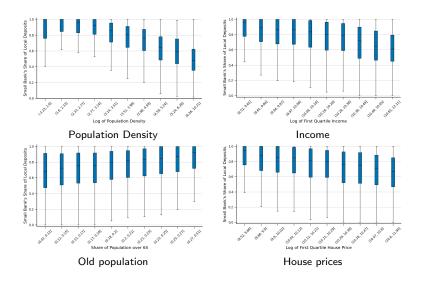
• Concentrate in the middle of the US instead of the coasts

Herfindahl-Hirschman Index per County

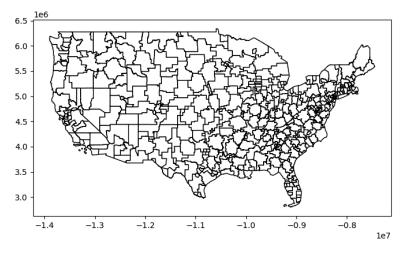


• Location with higher HHI but small banks still provide higher deposit rates

Share of Small-Bank Branches and Demographics



County Cluster Map



• Breadth-first search algorithm (Zhou and Hansen, 2006; Even and Even, 2011) to construct county clusters for low-population counties

Dreschler, Savov, and Schnabl (2017) Replication

$\Delta FFR imes HHI$	(1) 0.029*** (0.002)	(2) 0.029*** (0.002)	(3) 0.030*** (0.001)	(4) 0.033*** (0.002)	(5) 0.032*** (0.002)
Observations	195,732	195,732	195,732	195,732	195,732
R-squared	0.841	0.836	0.502	0.787	0.781
Bank x Quarter FE	Yes	Yes	No	No	No
State \times Quarter FE	Yes	No	No	Yes	No
Branch FE	Yes	Yes	No	Yes	Yes
County FE	Yes	Yes	Yes	Yes	Yes
Quarter FE	Yes	Yes	Yes	Yes	Yes

DSS (2017) Table 2 Replication. \triangle FFR denotes the quarter-level change in the Federal Funds Target Rate, HHI denotes the county-level deposit HHI.

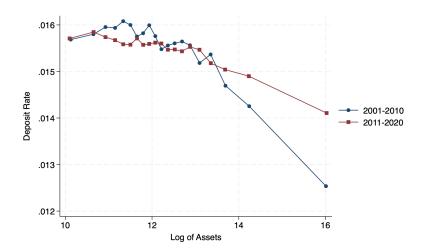
Dreschler, Savov, and Schnabl (2017) with Semi-Elasticities

$\Delta FFR imes \widehat{\zeta}$	(1) 0.0052*** (6.67e-05)	(2) 0.0053*** (6.91e-05)	(3) 0.0048*** (3.72e-05)	(4) 0.0050*** (5.75e-05)	(5) 0.0050*** (6.18e-05)
Observations	177,454	177,454	177,454	177,454	177,454
R-squared	0.869	0.864	0.587	0.820	0.816
Bank × Quarter FE	Yes	Yes	No	No	No
State \times Quarter FE	Yes	No	No	Yes	No
Branch FE	Yes	Yes	No	Yes	Yes o
County FE	Yes	Yes	Yes	Yes	Yes
Quarter FE	Yes	Yes	Yes	Yes	Yes

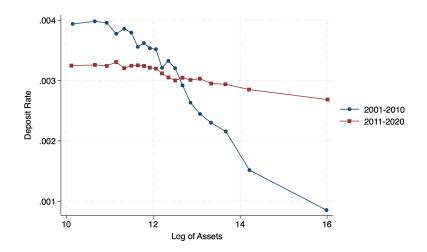
	TOT	TRANS	SAV	TIME
	(1)	(2)	(3)	(4)
large	-0.383^{***}	0.014	-0.288^{***}	0.056^{*}
	(0.033)	(0.023)	(0.034)	(0.029)
T-FE	Yes	Yes	Yes	Yes
Observations	116, 326	115,149	115, 495	$\begin{array}{c}115,866\\\textbf{0.901}\end{array}$
R-squared	0.790	0.259	0.675	

Deposit rate differences between large and small banks (Call Reports). This table estimates the average deposit rate difference between large and small banks using Call Report data. Rates are computed as the ratio of interest expense over deposits for the totality of deposits (TOT), Transaction Deposits (TRANS), Savings Deposits (SAV), and Time Deposits (TIME) respectively. Rates are winsorized at the 99th percentile.

Rates vs. Bank Size CD

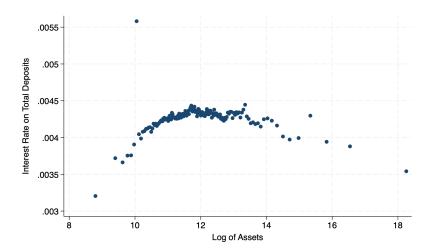


Binscatter of CD deposit rates (Ratewatch) controlling for quarterly fixed effects



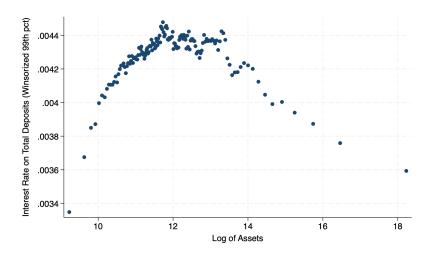
Binscatter of checking deposit rates (Ratewatch) controlling for quarterly fixed effects.

Deposit Rates vs. Bank Size



Binscatter of deposits interest rates (Call Reports) controlling for quarterly fixed effects.

Deposit Rates vs. Bank Size



Binscatter of deposits rates (Call Reports) controlling for quarterly fixed effects and winsorized at the 99th percentile.